Final Exam

Each problem is worth the same number of points. You will be graded both on the correctness and on the clarity of the argument.

- 1. Let a, b and m be integers. Prove that if $2a + 3b \ge 12m + 1$, then $a \ge 3m + 1$ or $b \ge 2m + 1$.
- 2. Prove that there does not exist a function $f : \mathbb{R} \to \mathbb{R}$ that satisfies the equality

$$f(x-1) + f(2-x) = x$$

for all $x \in \mathbb{R}$.

- 3. Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.
- 4. Prove by induction that 7 divides $3^{2n} 2^n$ for every nonnegative integer n.
- 5. Prove that among any n + 1 people selected from a group of n women and their husbands, there is a married couple.
- 6. Prove that for every $n \in \mathbb{N}$,

$$1! \cdot 1 + 2! \cdot 2 + 3! \cdot 3 + \dots + n! \cdot n = (n+1)! - 1.$$

Here *n*! denotes the product of the numbers 1, 2, 3, ..., n, so that $1! = 1, 2! = 2 \cdot 1 = 2$, $3! = 3 \cdot 2 \cdot 1 = 6$.

7. Show that among any six people one can either find three people who know one another, or three people so that none of them knows any of the other two.